Evolution of DNA sequencing talk 2015 version

Crossposted from microBEnet

Every year for the last few years I have given a talk on the “Evolution of DNA Sequencing” at the “Workshop in Applied Phylogenetics” at Bodega Bay Marine Lab. I just did the talk and thought I would post the slides here. I note – I also added an evolutionary tree of sequencing methods which I include here as a separate animated gif too.

I note I posted a request to Twitter the day before the talk pointing to last years slides and I got lots of helpful suggestions from people about what to add or change. I included links to Tweets in the talk and thanked those people on the slides. But I would like to thank everyone here too. Published originally on March 10, 2015.  Updated  10/20/15 with information below and republished. Finally posted the video of the talk (recorded using Camtasia) to Youtube.  It is imperfect (there are a few things I said that came out wrong .. it was late at night).  But since it may be helpful to people I am posting it.

Human Evolution and Neanderthals

Well, I suppose everyone should have seen this coming. An announcement has been made of plans to sequence the genome of a Neanderthal. The plan is to take DNA extracted from a Neanderthal fossil, and sequence it using a relatively new method from a company known as 454 Life Sciences.

I am torn about this project. Yes, it is cool to read DNA sequence from an extinct species, especially one that has not been around for some time and one of direct relevance to understanding human evolution. On the other hand, I would personally find it much more interesting to try and sequence an ancient Homo sapiens first. This is because the comparison of the Neanderthal to modern humans may not be the right comparison. It would be better to first compare an ancient Homo sapiens sample to modern humans, maybe with both being done with the same methods to be used in the Neanderthal study. This would be for two reasons. First, we do not really know how well the method(s) they are using work. And second, if the methods work well, it is possible that some of the differences they observe would actually be due to degradation or damage to the DNA sample. Therefore, if they simultaneously did work on an ancient Homo sapiens they might better be able to calculate which differences are do to real differences in the Neanderthal DNA and which are due to damage to the sample.

Assuming they do something like this and they are able to detect differences in the Neanderthal genome. What then? In the end, the major area of interest will be population genetic analyses trying to figure out how long Homo sapiens and Neanderthals were separated for and whether there was any interbreeding. To figure this out, they will need more Neanderthal samples and ancient human samples. Nevertheless, it is always good to do something that brings attention to the public for scientific research.